Applications: List of Examples

Overview

Optimi­zation is ever­y­whe­re. Below you will find a list of refe­ren­ces and brief descrip­ti­ons of prac­ti­cal optimi­zation pro­blems that have alre­a­dy been suc­cessful­ly sol­ved. We have limi­t­ed our­sel­ves to the typi­cal stan­dard sources for each gen­re. Thus, the list is mas­si­ve­ly incom­ple­te but still pro­vi­des an over­view of the possibilities.

Optimal Design

Pro­blemSource
Trans­port
Tra­ve­ling Sales­per­son Problem[Sim­chi-Levy, p. 72], [Kall­rath, p. 224]
Optimi­zation of trans­port routes[Appa, pp. 151–156], [Gass, p. 319]
Trans­port plan­ning with time‑, supply‑, demand‑, and capa­ci­ty contraints. [Sim­chi-Levy, p. 301],
[Sim­chi-Levy, p. 313],
[Sim­chi-Levy, p. 341]
Opti­mal pos­tal dis­tri­bu­ti­on and bus routes[Appa, pp. 163–171], [Sim­chi-Levy, p. 403]
Design trans­por­ta­ti­on networks[Appa, pp. 130–133]
Path length minimization[Gass p. 260], [Hu2, p. 115], [Van­der­bei, p. 260], [Kor­te, p. 159]
Mate­ri­al flow maximization[Van­der­bei, p. 266]
Mul­ti com­mo­di­ty flows[Kor­te, p. 503], [Law­ler, p. 173], [Sche­we, p. 26]
Cost mini­miza­ti­on for mate­ri­al flows[Kor­te, p. 215], [Gass, p. 372], [Law­ler, p. 129]
Dis­tri­bu­ti­on net­work of a brewery[Kall­rath, p. 265]
Plan­ning
Pro­duc­tion plan­ning of con­su­mer goods[Pochet, p. 16], [Pochet, p. 169], [Pochet, p. 173], [Pochet, p. 345],
[Kall­rath, p. 261], [King, p.49], [Denar­do, p. 86]
Pro­duk­ti­on plan­ning of pig­ments, pow­der and insu­la­ting material[Pochet, p. 448], [Pochet, p. 466], [Pochet, p. 473]
Pro­duk­ti­on plan­ning metal ingots[Kall­rath, p. 314]
Sche­du­ling of pha­ra­me­ceu­ti­cal tests[Appa, pp. 265–285]
Optimi­zation of machi­ne pro­duc­tion schedules[Schulz, p. 125], [Kall­rath, p. 247]
Job assign­ment[Van­der­bei, p. 259], [Han­eveld, p. 187], [Gass, p. 343]
Gene­ral assign­ment problems[Kor­te, p. 278]
Lot size design[Pochet, p. 207], [Pochet, p. 273], [Pochet, p. 369]
Pro­vi­sio­ning procedures[Pochet, p. 304]
Time table optimization[Han­eveld, p. 201]
Opti­mal con­tract allocation[Gass, p. 345], [Kall­rath, p. 312]
Inter­in­dus­tri­al acti­vi­ty planning[Gass, p. 362]
Acqui­si­ti­on plan­ning for spa­re parts[Denar­do, p. 67]
Pro­ces­sor scheduling[Law­ler, p. 218]
Plan­ning repair project[King, p. 39]
Plan­ning dis­tri­bu­ti­on networks[Pochet, p. 66]
Dis­tri­bu­ti­on problems
Posi­tio­ning signal amplifier[Appa, p. 134]
Posi­tio­ning mea­su­re­ment devices[Appa, p. 135]
Infra­struc­tu­re design for an oil field[Appa, pp. 291–317]
DNA sequen­cing[Appa, pp. 144–146]
Memo­ry allo­ca­ti­on management[Appa, pp. 146–148]
Allo­ca­ti­on trans­mis­si­on rates in telecommunication[Appa, pp. 195–224],
[Kall­rath, p. 364]
Optimi­zation geo­me­try during radia­ti­on therapy[Appa, pp. 317–330]
Expe­ri­ment design[Boyd2, p. 387]
Port­fo­lio optimization[Boyd2, p. 155]
Sur­face minimization[Boyd2, p. 159]
Knap­sack pro­blems and bin-pack­ing problems[Hu2, p. 87], [Kor­te, p. 471], [Gass, p. 391], [Denar­do, p. 39], [Sim­chi-Levy, p. 66], [King, p. 33]
Pack­ing and storage[Pochet, p. 421], [Pochet, p. 436]
Cut­ting stock optimization[Kall­rath, p. 449]
Faci­li­ty layout[Anjos, p. 849], [Lee, p. 597]
Faci­li­ty loca­ti­on choice[Kor­te, p. 629], [Sim­chi-Levy, p. 283], [Kall­rath, p. 232]
Elek­tri­ci­ty distribution[Han­eveld, p. 204]
Pri­ce deter­mi­na­ti­on in ener­gy networks[Sche­we, p. 57], [Sche­we, p. 83]
Diet pro­blems[Gass, p. 369]
Opti­mal news mixes[King, p. 4]
Net­work design and graph problems
Logi­cal satisfiability[Appa, pp. 60–99], [Gärt­ner, p. 193], [Kall­rath, p. 241]
Team eli­mi­na­ti­ons in sports[Appa, pp. 137–139]
Design decis­i­on models[Appa, pp. 141–146]
Graph decom­po­si­ti­ons[De Klerk, p. 169]
Maxi­mal graph cuts[Gärt­ner, p.3], [Wol­ko­wicz, p. 396], [De Klerk, p. 7]
Design inte­gra­ted circuits[Hu2, p. 120], [Kor­te, p. 509]
Design of mecha­ni­cal structures[Wol­ko­wicz, p. 443], [Van­der­bei, p. 285]
Net­work design[Kor­te, p. 543], [Law­ler, p. 286], [Sim­chi-Levy, p. 379], [Sche­we, p. 32]
Sto­cha­stic net­work design[King, p. 86]
Design net­works water, gas[Sche­we, p. 113], [Sche­we, p. 173]
Shan­non capa­ci­ty of a graph[Gärt­ner, p. 27]
Qua­dra­tic forms on graphs and Ising model[Gärt­ner, p. 167]
Eigenva­lue pro­blems on graphs[Wol­ko­wicz, p. 547]
Max-flow min-cut[Law­ler, p. 120]
Matching bipar­ti­te graphs[Law­ler, p. 182]
Par­ti­tio­ning and set cover problems[Kall­rath, p. 234]

Optimal control

Pro­blemSource
Phy­si­cal systems
Pre­dic­ti­ve con­trol of dyna­mi­cal systems[Anto­niou, p. 591]
Opti­mal force distributions[Anto­niou, p. 602]
Con­trol of mecha­ni­cal oscillators[Lee, p. 648]
Con­trol of sto­cha­stic dif­fe­ren­ti­al equations[Teo, p. 480]
Con­trol robot motion[Tas­sa]
Inver­se kine­ma­tics for robotics[Anto­niou, p. 251]
Time delay­ed opti­mal control[Teo, p. 152]
Con­trol pyro­ly­sis of bitumen[Teo, p. 282]
Pro­duc­tion of penicillin[Teo, p. 7]
Con­trol of con­tai­ner cranes[Teo, p. 333]
Motor con­trol[Teo, p. 436], [Pey­po­u­quet, p. 71]
Ship con­trol[Teo, p. 62]
Con­trol of water tank dyna­mics and water reservoirs[Tri­an­ta­f­yl­lo­pou­los, p. 3], [Fein­berg, p. 537], [Han­eveld, p. 185]
Test of aero­space objects and ground control[Tri­an­ta­f­yl­lo­pou­los, p. 460], [Lee, p. 654]
Air­plane control[Denar­do, p. 84], [Lee, p. 692]
Optimi­zation of pro­duc­tion in a che­mi­cal reactor[Kall­rath, p. 151]
Con­trol of che­mi­cal fer­men­ta­ti­on processes[Teo, p. 418], [Denar­do, p. 77]
Sepa­ra­ti­on of che­mi­cals via chromatography[Lee, p. 659]
Syn­chro­niza­ti­on of con­ti­nuous and dis­crete che­mi­cal processes[Kall­rath, p. 382]
Mini­ma­li­ty pro­per­ties of phy­si­cal systems[Alek­seev, p.7]
Ope­ra­ti­on and production
Data-dri­ven adap­ti­ve pro­cess control[Bou­cherie, p. 406], [Han­eveld, p. 181]
Inven­to­ry con­trol with mul­ti­ple commodities[Sim­chi-Levy, p. 117],
[Sim­chi-Levy, p. 122], [Gass, p. 155], [Bell­mann, p. 152]
Optimi­zation of coo­ling chain for a supermarket[Lee, p. 651]
Warehose sto­rage manage­ment with mul­ti­ple retailers[Sim­chi-Levy, p. 129],
[Sim­chi-Levy, p. 137]
Sto­cha­stic inven­to­ry control[Sim­chi-Levy, p. 151],
[King, p. 49], [Denar­do, p. 145]
Sto­cha­stic ski retailing[Denar­do, p. 117]
Machi­ne maintenance[Teo, p. 487]
Pro­cu­re­ment strategy[Kall­rath, p. 270]
Demand con­trol[Kall­rath, p. 275]
Decis­i­on ana­ly­sis for logi­sti­cal tasks[Teo, p. 163]
Opti­mal elec­tri­ci­ty production[Denar­do, p. 130]
Adap­ti­ve call­cen­ter occupancy[Bou­cherie, p. 487]
Decis­i­ons in com­plex systems
Port­fo­lio management[Teo, p. 132]
Tra­ding finan­cial derivatives[Tri­an­ta­f­yl­lo­pou­los, p. 388], [Bou­cherie, p. 523], [Fein­berg, p. 461]
Adap­ti­ve res­sour­ce allocation[Denar­do, p. 34], [Bell­mann, p. 3]
Sto­cha­stic gold mining[Bell­mann, p. 61]
Queue optimi­zation for ser­ver systems[Bou­cherie, p. 103]
Optimi­zation of timing and dis­tri­bu­ti­on of ambu­lan­ce dispatch.[Bou­cherie, p. 269]
Pre­dic­ti­ve plan­ning of pre­ven­ti­ve appoint­ments and treatments. [Bou­cherie, p. 189], [Bou­cherie, p. 243]
Traf­fic depen­dent opti­mal con­trol of traf­fic lights[Bou­cherie, p. 371]
Design of regu­la­ti­ons for fisheries[Bou­cherie, p. 426], [Lee, p. 643]
Sub­way navigation[Lee, p. 645]
Games and adap­ti­ve strategies
Simp­le Blackjack[Denar­do, p. 131]
Two-per­son zero-sum games[Gass, p. 406]
Equi­li­bria in tele­com­mu­ni­ca­ti­on networks[Comi­net­ti, p. 145], [Fein­berg, p. 489]
Equi­li­bria in traf­fic networks[Comi­net­ti, p. 222]
Aqua­tic exploration[Denar­do, p. 1136]
Pur­su­it and evasion[Bell­mann, p. 287]

Optimal Estimation

Pro­blemQuel­le
Regres­si­on
Least squa­res with constraints[Boyd, p. 153]
Real estate pri­cing and housing markets[Fahr­meir, p. 22], [Has­tie, p. 371]
Ana­ly­sis of demo­gra­phic models[Has­tie, p. 379]
Pri­ce ana­ly­sis oran­ge juice[Fahr­meir, p. 403]
Goog­le page­rank algorithm[Has­tie, p. 576]
Ana­ly­sis forest health[Fahr­meir, p. 326]
Ana­ly­sis health mari­ti­me ecology[Has­tie, p. 375]
Dri­vers of mal­nu­tri­ti­on in Sambia[Fahr­meir, p. 576
Brain map­ping[Fahr­meir, p. 501]
Mass spec­tro­sko­py[Has­tie, p. 664]
Model for poul­try sales[Tri­an­ta­f­yl­lo­pou­los, p. 151]
Mar­ke­ting cam­paing plan­ning with adver­ti­se­ment data[James, p. 102]
Robust Least squares[Lobo], [Boyd, p. 318] 
Robust PCA and logi­stic Regression[O’donoghue]
Clas­si­fi­ca­ti­on
Clas­si­fi­ca­ti­on of hand­writ­ten numbers[Anto­niou, p. 240], [Has­tie, p. 404], [Schöl­kopf, p. 215], [Ras­mus­sen, p.70]
Object detec­tion in images, image classification[Paszke], [Has­tie, p. 470], [Has­tie, p. 534]
Ana­ly­sis of gene expres­si­ons with sup­port vec­tor machines [James, p. 366]
Speech reco­gni­ti­on and text-to-speech conversion[Has­tie, p. 148], [Paszke]
Clas­si­fi­ca­ti­on of waveforms[Has­tie, p. 451]
Spam detec­tion[Has­tie, p. 313]
Clas­si­fi­ca­ti­on of text summaries[Has­tie, p. 672], [Paszke]
User­de­tec­tion in wire­less networks[Anto­niou, p. 614]
Pro­te­in classification[Has­tie, p. 668]
Esti­ma­ti­on of functions 
Model­ling of phy­si­cal processes[Ras­mus­sen, p. 79], [Chi­les, p. 28], [Cres­sie, p. 410]
Inter­po­la­ti­on of spa­tio­tem­po­ral processes[Bez­haev, p. 157], [Wah­ba, p. 46]
Rekon­struc­tion of func­tions, tra­jec­to­ries, vec­tor fields.[Bez­haev, p. 157]
Signal decom­po­si­ti­on into inde­pen­dent components[Ber­li­net, p. 83], [Comon, p. 467], [Wah­ba, p. 73]
Demi­xing of audio signals[Comon, p. 779]
Demi­xing of electrocardiograms[Comon, p. 746]
Demi­xing of image- and videodata[Comon, p. 670]
Ana­ly­sis and inter­pre­ta­ti­on of mul­tis­pec­tral images[Comon, p. 658], [Cres­sie, p. 5]
Atmo­sphe­re modelling[Wah­bar, p. 78], [Cres­sie, p. 132]
Image gene­ra­ti­on[Paszke]
Pre­dic­tion of air pollution[Tri­an­ta­f­yl­lo­pou­los, p. 234]
Esti­ma­ti­on of spa­ti­al quan­ti­ties like res­sour­ce dis­tri­bu­ti­ons, soil pro­per­ties, atmo­sphe­ric para­me­ters, tree den­si­ties, oce­an tem­pe­ra­tures, wind velocities, …[Chi­les, p.36] [Chi­les, p. 53], [Chi­les, p. 218], [Chi­les, p. 352], [Wacker­na­gel, p. 117],
[Wacker­na­gel, p. 184], [Wacker­na­gel, p. 298], [Cres­sie, p. 248], …
Image recon­s­truc­tion and compression[Boyd, p. 326], [Mon­ga, p. 129], [MacK­ay, p. 65]
Image qua­li­ty optimization[Mon­ga, p. 15]
Smoot­hing with wavelets[Has­tie, p. 176]
Esti­ma­ti­on of ship attitude[Tri­an­ta­f­yl­lo­pou­los, p. 284]
Text trans­la­ti­on[Paszke]
Sta­tis­tics and data analysis
Che­by­chev ine­qua­li­ty for uncer­tain­ty quantification[Boyd, p. 374]
Hypo­the­sis tests and signal detection[Boyd, p. 364], [Fomin, p. 30]
Cor­re­la­ti­on ana­ly­sis, vari­ance ana­ly­sis, PCA, CCA, ICA, LDA, …[Press, p. 306], [Tren­da­fi­l­ov, p. 89]
Quan­ti­le estimation[Schöl­kopf, p. 81]
Ana­ly­sis and inter­pre­ta­ti­on of cli­ni­cal stu­dies on leuk­emia, lung dise­a­ses, com­pli­ca­ti­ons during c‑sections, ..[Fahr­meir, p. 57]
[Fahr­meir, p. 326], [Fahr­meir, p. 331], [Has­tie, p. 49], [Has­tie, p. 122]
Vehic­le insu­rance and vehic­le pricing[Fahr­meir, p. 52], 
[Fahr­meir, p. 152], [James, p. 165]
Pro­ba­bi­li­ty of patent applications[Fahr­meir, p. 33]
Design digi­tal filters[Anto­niou, p. 261], [Anto­niou, p. 572]
Mea­su­ring the effi­ci­en­cy of orga­niza­tio­nal units[Kall­rath, p. 159]
Esti­mat­ing cre­dit scores[Fahr­meir, p. 290]
Pro­ces­sing of RFID Data[Comon, p. 649]
Iden­ti­fi­ca­ti­on and elemi­na­ti­on of mul­ti-path effects in measurements[Comon, p. 655]
Com­mu­ni­ca­ti­on in noi­sy encrypt­ed channels[MacK­ay, p. 162], [MacK­ay, p. 241]
Cons­trai­ned simulation[Chi­les, p. 478]

Sources

[Alek­seev] Alek­seev, V. M. (2013). Opti­mal Con­trol. USA: Sprin­ger US.

[Ander­son] Ander­son, B. D. O., & Moo­re, J. B. (2007). Opti­mal Con­trol: Line­ar Qua­dra­tic Methods. New York: Cou­rier Corporation.

[Anjos] Anjos, Miguel F., & Las­ser­re, Jean B. (2016). Hand­book on Semi­de­fi­ni­te, Conic and Poly­no­mi­al Optimi­zation. USA: Sprin­ger US.

[Anto­niou] Anto­niou, Andre­as, & Lu, Wu-Sheng. (2007). Prac­ti­cal Optimi­zation: Algo­rith­ms and Engi­nee­ring Appli­ca­ti­ons. Ber­lin Hei­del­berg: Sprin­ger Sci­ence & Busi­ness Media.

[Appa] Appa, G. M., Pitsou­lis, L., & Wil­liams, H. P. (2006). Hand­book on Model­ling for Dis­crete Optimi­zation. Ber­lin, Hei­del­berg: Springer.

[Bell­man] Bell­man, Richard E. (2021). Dyna­mic Pro­gramming: . Kas­sel: Prince­ton Uni­ver­si­ty Press.

[Ben­der] Ben­der, Edward A. (2012). An Intro­duc­tion to Mathe­ma­ti­cal Mode­ling. New York: Cou­rier Corporation.

[Ber­li­net] Ber­li­net, A., & Tho­mas-Agnan, C. (2011). Repro­du­cing Ker­nel Hil­bert Spaces in Pro­ba­bi­li­ty and Sta­tis­tics: . Ber­lin Hei­del­berg: Sprin­ger Sci­ence & Busi­ness Media.

[Bez­haev] Bez­haev, Ana­to­ly Yu., & Vasi­len­ko, Vla­di­mir A. (2013). Varia­tio­nal Theo­ry of Spli­nes. Ber­lin Hei­del­berg: Sprin­ger Sci­ence & Busi­ness Media.

[Bou­cherie] Bou­cherie, R. J., & Dijk, N. M. (2017). Mar­kov Decis­i­on Pro­ces­ses in Prac­ti­ce. Hei­del­berg, New York, Dor­d­recht, Lon­don: Sprin­ger Inter­na­tio­nal Publishing.

[Boyd1]  Boyd, S., El Ghaoui, L., Feron, E., & Bal­a­krish­n­an, V. (1994). Line­ar Matrix Ine­qua­li­ties in Sys­tems and Con­trol Theo­ry. Phil­adel­phia: SIAM Stu­dies in Appli­ed and Nume­ri­cal Mathematics.

[Boyd2] Boyd, S., & Van­den­berg­he, L. (2004). Con­vex Optimi­zation. Cam­bridge: Cam­bridge Uni­ver­si­ty Press.

[Chilès] Chilès, Jean-Paul, & Del­fi­ner, Pierre. (2009). Geo­sta­tis­tics: Mode­ling Spa­ti­al Uncer­tain­ty. New York: John Wiley & Sons.

[Comi­net­ti] Comi­net­ti, Rober­to, Fac­chin­ei, Fran­cis­co, & Las­ser­re, Jean B. (2012). Modern Optimi­zation Model­ling Tech­ni­ques. Ber­lin Hei­del­berg: Sprin­ger Sci­ence & Busi­ness Media.

[Comon] Comon, Pierre, & Jut­ten, Chris­ti­an. (2010). Hand­book of Blind Source Sepa­ra­ti­on: Inde­pen­dent Com­po­nent Ana­ly­sis and Appli­ca­ti­ons. Ams­ter­dam, Bos­ton: Aca­de­mic Press.

[Cres­sie] Cres­sie, Noel, and Wik­le, Chris­to­pher K. (2015). Sta­tis­tics for Spa­tio-Tem­po­ral Data. New York: John Wiley & Sons.

[De Klerk] De Klerk, E. (2006). Aspects of Semi­de­fi­ni­te Pro­gramming: Inte­ri­or Point Algo­rith­ms and Sel­ec­ted Appli­ca­ti­ons. Ber­lin Hei­del­berg: Sprin­ger Sci­ence & Busi­ness Media.

[Dem’yanov] Dem’yanov, V. F., & Malo­ze­mov, V. N. (2014). Intro­duc­tion to Mini­max. New York: Cou­rier Corporation.

[Denar­do] Denar­do, Eric V. (2012). Dyna­mic Pro­gramming: Models and Appli­ca­ti­ons. New York: Cou­rier Corporation.

[Dostál] Dostál, Zde­nek. (2009) Opti­mal Qua­dra­tic Pro­gramming Algo­rith­ms: With Appli­ca­ti­ons to Varia­tio­nal Ine­qua­li­ties. Ber­lin Hei­del­berg: Sprin­ger Sci­ence & Busi­ness Media.

[Dym] Dym, C. L. (2002). Sta­bi­li­ty Theo­ry and Its Appli­ca­ti­ons to Struc­tu­ral Mecha­nics. New York: Dover Publications.

[Erci­yes] Erci­yes, K. (2021). Dis­crete Mathe­ma­tics and Graph Theo­ry: A Con­cise Stu­dy Com­pa­n­ion and Gui­de. Sin­ga­po­re: Sprin­ger Nature.

[Fahr­meir] Fahr­meir, Lud­wig, Kneib, Tho­mas, Lang, Ste­fan, & Marx, Bri­an. (2013). Regres­si­on: Models, Methods and Appli­ca­ti­ons. Ber­lin Hei­del­berg: Sprin­ger Sci­ence & Busi­ness Media.

[Fein­berg] Fein­berg, E. A., and Shwartz, A. (2012). Hand­book of Mar­kov Decis­i­on Pro­ces­ses: Methods and Appli­ca­ti­ons. Ber­lin Hei­del­berg: Sprin­ger Sci­ence & Busi­ness Media.

[Fomin] Fomin, V.N. (2012). Opti­mal Fil­te­ring: Volu­me I: Fil­te­ring of Sto­cha­stic Pro­ces­ses. Ber­lin Hei­del­berg: Sprin­ger Sci­ence & Busi­ness Media.

[Fu] Fu, Micha­el C. (2014). Hand­book of Simu­la­ti­on Optimi­zation. Ber­lin, Hei­del­berg: Springer.

[Gärt­ner] Gärt­ner, Bernd, & Matou­sek, Jiri. (2012). Appro­xi­ma­ti­on Algo­rith­ms and Semi­de­fi­ni­te Pro­gramming: . Ber­lin Hei­del­berg: Sprin­ger Sci­ence & Busi­ness Media.

[Gass] Gass, Saul I. (2003). Line­ar Pro­gramming: Methods and Appli­ca­ti­ons. New York: Cou­rier Corporation.

[Giraud] Giraud, Chris­to­phe. (2014). Intro­duc­tion to High-Dimen­sio­nal Sta­tis­tics. Boca Raton, Fla: CRC Press.

[Gra­fa­rend] Gra­fa­rend, Erik W., San­sò, F. (2012). Optimi­zation and Design of Geo­de­tic Net­works. Ber­lin Hei­del­berg: Sprin­ger Sci­ence & Busi­ness Media.

[Han­eveld] Han­eveld, Wil­lem K. Klein, Vlerk, Maar­ten H. van der, & Romei­jn­ders, Ward. (2019). Sto­cha­stic Pro­gramming: Mode­ling Decis­i­on Pro­blems Under Uncer­tain­ty. Sin­ga­po­re: Sprin­ger Nature.

[Has­tie] Has­tie, T., Tibs­hira­ni, R., & Fried­man, J. (2013).  The Ele­ments of Sta­tis­ti­cal Lear­ning: Data Mining, Infe­rence, and Pre­dic­tion. Ber­lin Hei­del­berg: Sprin­ger Sci­ence & Busi­ness Media.
 
[Hu1] Hu, Qiy­ing, & Yue, Wuyi (2008). Mar­kov Decis­i­on Pro­ces­ses with Their Appli­ca­ti­ons. Ber­lin, Hei­del­berg: Springer.
 

[Hu2] Hu, T. C., & Kahng, Andrew B. (2016). Line­ar and Inte­ger Pro­gramming Made Easy. Ber­lin, Hei­del­berg: Springer.

[James] James, Gareth, Wit­ten, Danie­la, Has­tie, Tre­vor, & Tibs­hira­ni, Robert. (2013). An Intro­duc­tion to Sta­tis­ti­cal Lear­ning: with Appli­ca­ti­ons in R. Ber­lin Hei­del­berg: Sprin­ger Sci­ence & Busi­ness Media.

[Jung­ni­ckel] Jung­ni­ckel, Die­ter. (2013). Graphs, Net­works and Algo­rith­ms: . Ber­lin Hei­del­berg: Sprin­ger Sci­ence & Busi­ness Media.

[Kall­rath] Kall­rath, Josef. (2021). Busi­ness Optimi­zation Using Mathe­ma­ti­cal Pro­gramming: An Intro­duc­tion with Case Stu­dies and Solu­ti­ons in Various Alge­braic Mode­ling Lan­guages. Sin­ga­po­re: Sprin­ger Nature.

[King] King, Alan J., & Wal­lace, Stein W. (2012). Mode­ling with Sto­cha­stic Pro­gramming: . Ber­lin Hei­del­berg: Sprin­ger Sci­ence & Busi­ness Media.

[Kor­te] Kor­te, Bern­hard, and Vygen, Jens. (2012). Kom­bi­na­to­ri­sche Opti­mie­rung: Theo­rie und Algo­rith­men. Ber­lin Hei­del­berg New York: Springer-Verlag.

[Law­ler] Law­ler, Euge­ne. (2012) Com­bi­na­to­ri­al Optimi­zation: Net­works and Matro­ids. New York: Cou­rier Corporation.

[Lee] Lee, Jon, and Leyffer, Sven. (2011). Mixed Inte­ger Non­line­ar Pro­gramming: . Ber­lin Hei­del­berg: Sprin­ger Sci­ence & Busi­ness Media.

[Li] Li, Li. (2015). Sel­ec­ted Appli­ca­ti­ons of Con­vex Optimi­zation. Ber­lin, Hei­del­berg: Springer.

[Lobo] Lobo, M. S., Van­den­berg­he, L., Boyd, S. & Lebret, H. (1998). Appli­ca­ti­ons of second-order cone pro­gramming. Line­ar Alge­bra and its Appli­ca­ti­ons, 184, 193–228.

[Luen­ber­ger] Luen­ber­ger, David G., & Ye, Yinyu. (2021). Line­ar and Non­line­ar Pro­gramming. Sin­ga­po­re: Sprin­ger Nature.

[MacK­ay] MacK­ay, David J. C. (2003). Infor­ma­ti­on Theo­ry, Infe­rence and Lear­ning Algo­rith­ms. Cam­bridge: Cam­bridge Uni­ver­si­ty Press.

[Mon­ga] Mon­ga, Vishal. (2017). Hand­book of Con­vex Optimi­zation Methods in Ima­ging Sci­ence. Ber­lin, Hei­del­berg: Springer.

[Mor­se] Mor­se, Phil­ip M., & Kim­ball, Geor­ge E. (2012). Methods of Ope­ra­ti­ons Rese­arch. New York: Cou­rier Corporation.

[O’donoghue] O’donoghue, B., Chu, E., Parikh, N., & Boyd, S. (2016). Conic Optimi­zation via Ope­ra­tor Split­ting and Homo­ge­neous Self-Dual Embed­ding. Jour­nal of Optimi­zation Theo­ry and Appli­ca­ti­ons, 169(3), 1042–1068.

 

[Paszke] Paszke, A., Gross, S., Mas­sa, F., Lerer, A., Brad­bu­ry, J., Chanan, G., Kil­leen, T., Lin, Z., Gimels­heim, N., Anti­ga, L., Des­mai­son, A., Kopf, A., Yang, E., Devi­to, Z., Rai­son, M. Teja­ni, A., Chi­lamk­ur­thy, S., Stei­ner, B., Fang, L., Bai, J., & Sou­mith, C. (2019). PyTorch: An impe­ra­ti­ve style, High-Per­for­mance Deep Lear­ning Libra­ry. In: Advan­ces in Neu­ral Infor­ma­ti­on Pro­ces­sing Sys­tems 32. Cur­ran Asso­cia­tes, Inc, pp. 8024–8035. URL:  https://pytorch.org/tutorials/

[Pey­po­u­quet] Pey­po­u­quet, Juan. (2015). Con­vex Optimi­zation in Nor­med Spaces: Theo­ry, Methods and Examp­les. Ber­lin, Hei­del­berg: Springer.

[Pine­do] Pine­do, Micha­el L. (2016). Sche­du­ling: Theo­ry, Algo­rith­ms, and Sys­tems. Ber­lin, Hei­del­berg: Springer.

[Pochet] Pochet, Yves, & Wol­sey, Lau­rence A. (2006). Pro­duc­tion Plan­ning by Mixed Inte­ger Pro­gramming. Ber­lin Hei­del­berg: Sprin­ger Sci­ence & Busi­ness Media.

[Poler] Poler, Raúl, Mula, Jose­fa, and Díaz-Madro­ñe­ro, Manu­el. (2013). Ope­ra­ti­ons Rese­arch Pro­blems: State­ments and Solu­ti­ons. Ber­lin Hei­del­berg: Sprin­ger Sci­ence & Busi­ness Media.

[Press] Press, S. James. (1982). Appli­ed Mul­ti­va­ria­te Ana­ly­sis: Using Baye­si­an and Fre­quen­tist Methods of Infe­rence. Mala­bar, Flo­ri­da: R.E. Krie­ger Publi­shing Company.

[Ras­mus­sen] Ras­mus­sen, Carl Edward, and Wil­liams, Chris­to­pher K. I. (2005). Gaus­si­an Pro­ces­ses for Machi­ne Lear­ning: . Cam­bridge: MIT Press.

[Sán­chez] Sán­chez, José Manu­el Gar­cía. (2020). Model­ling in Mathe­ma­ti­cal Pro­gramming: Metho­do­lo­gy and Tech­ni­ques. Sin­ga­po­re: Sprin­ger Nature.

[Sche­we] Sche­we, Lars, & Schmidt, Mar­tin. (2019). Opti­mie­rung von Ver­sor­gungs­net­zen: Mathe­ma­ti­sche Model­lie­rung und Lösungs­tech­ni­ken. Wies­ba­den: Sprin­ger Ber­lin Heidelberg.

[Schöl­kopf] Schöl­kopf, Bern­hard, & Smo­la, Alex­an­der J. (2018). Lear­ning with Ker­nels: Sup­port Vec­tor Machi­nes, Regu­la­riza­ti­on, Optimi­zation, and Bey­ond. Cam­bridge: MIT Press.

[Schulz] Schulz, Andre­as S., Sku­tel­la, Mar­tin, Stil­ler, Sebas­ti­an, & Wag­ner, Doro­thea. (2016). Gems of Com­bi­na­to­ri­al Optimi­zation and Graph Algo­rith­ms. Ber­lin, Hei­del­berg: Springer.

[Sim­chi-Levy] Sim­chi-Levi, David, Chen, Xin, & Bra­mel, Juli­en. (2013). The Logic of Logi­stics: Theo­ry, Algo­rith­ms, and Appli­ca­ti­ons for Logi­stics Manage­ment. Ber­lin Hei­del­berg: Sprin­ger Sci­ence & Busi­ness Media.

[Sut­ton] Sut­ton, R. S., & Bar­to, A. G. (2018). Rein­force­ment Lear­ning: An Intro­duc­tion. Cam­bridge: MIT Press.

[Tas­sa] Tas­sa, Y., Erez, T., & Todo­rov, E. (2012). Syn­the­sis and sta­bi­liza­ti­on of com­plex beha­vi­ors through online tra­jec­to­ry optimi­zation. In: Pro­cee­dings IEEE/RSJ Inter­na­tio­nal con­fe­rence on Intel­li­gent Robots and Sys­tems 2012, pp. 4906–4913.

[Teo] Teo, Kok Lay, Li, Bin, Yu, Chang­jun, & Reh­bock, Vol­ker. (2021). Appli­ed and Com­pu­ta­tio­nal Opti­mal Con­trol: A Con­trol Para­me­triza­ti­on Approach. Sin­ga­po­re: Sprin­ger Nature.

[Tren­da­fi­l­ov] Tren­da­fi­l­ov, Nickolay. (2021). Mul­ti­va­ria­te Data Ana­ly­sis on Matrix Mani­folds (with Man­opt). Sin­ga­po­re: Sprin­ger Nature.

[Tri­an­ta­f­yl­lo­pou­los] Tri­an­ta­f­yl­lo­pou­los, Kos­tas. (2021). Baye­si­an Infe­rence of Sta­te Space Models: Kal­man Fil­te­ring and Bey­ond. Cham, Hei­del­berg, New York, Dor­d­recht, Lon­don: Sprin­ger Inter­na­tio­nal Publishing.

[Van­der­bei] Van­der­bei, Robert J. (2013). Line­ar Pro­gramming: Foun­da­ti­ons and Exten­si­ons. USA: Sprin­ger US.

[Wacker­na­gel] Wacker­na­gel, Hans. (2013). Mul­ti­va­ria­te Geo­sta­tis­tics: An Intro­duc­tion with Appli­ca­ti­ons. Ber­lin Hei­del­berg: Sprin­ger Sci­ence & Busi­ness Media.

[Wah­ba] Wah­ba, Grace. (1990). Spli­ne Models for Obser­va­tio­nal Data. Phil­adel­phia: SIAM.

[Wol­ko­wicz] Wol­ko­wicz, H., Sai­gal, R., & Van­den­berg­he, L. (2012). Hand­book of Semi­de­fi­ni­te Pro­gramming: Theo­ry, Algo­rith­ms, and Appli­ca­ti­ons. Ber­lin Hei­del­berg: Sprin­ger Sci­ence & Busi­ness Media.

[Zelin­ka] Zelin­ka, Ivan, Sná­sel, Václav, & Abra­ham, Ajith. (2012). Hand­book of Optimi­zation: From Clas­si­cal to Modern Approach. Ber­lin Hei­del­berg: Sprin­ger Sci­ence & Busi­ness Media.