Applications: List of Examples
Overview
Optimization is everywhere. Below you will find a list of references and brief descriptions of practical optimization problems that have already been successfully solved. We have limited ourselves to the typical standard sources for each genre. Thus, the list is massively incomplete but still provides an overview of the possibilities.
Optimal Design
Problem | Source |
---|---|
Transport | |
Traveling Salesperson Problem | [Simchi-Levy, p. 72], [Kallrath, p. 224] |
Optimization of transport routes | [Appa, pp. 151–156], [Gass, p. 319] |
Transport planning with time‑, supply‑, demand‑, and capacity contraints. | [Simchi-Levy, p. 301], [Simchi-Levy, p. 313], [Simchi-Levy, p. 341] |
Optimal postal distribution and bus routes | [Appa, pp. 163–171], [Simchi-Levy, p. 403] |
Design transportation networks | [Appa, pp. 130–133] |
Path length minimization | [Gass p. 260], [Hu2, p. 115], [Vanderbei, p. 260], [Korte, p. 159] |
Material flow maximization | [Vanderbei, p. 266] |
Multi commodity flows | [Korte, p. 503], [Lawler, p. 173], [Schewe, p. 26] |
Cost minimization for material flows | [Korte, p. 215], [Gass, p. 372], [Lawler, p. 129] |
Distribution network of a brewery | [Kallrath, p. 265] |
Planning | |
Production planning of consumer goods | [Pochet, p. 16], [Pochet, p. 169], [Pochet, p. 173], [Pochet, p. 345], [Kallrath, p. 261], [King, p.49], [Denardo, p. 86] |
Produktion planning of pigments, powder and insulating material | [Pochet, p. 448], [Pochet, p. 466], [Pochet, p. 473] |
Produktion planning metal ingots | [Kallrath, p. 314] |
Scheduling of pharameceutical tests | [Appa, pp. 265–285] |
Optimization of machine production schedules | [Schulz, p. 125], [Kallrath, p. 247] |
Job assignment | [Vanderbei, p. 259], [Haneveld, p. 187], [Gass, p. 343] |
General assignment problems | [Korte, p. 278] |
Lot size design | [Pochet, p. 207], [Pochet, p. 273], [Pochet, p. 369] |
Provisioning procedures | [Pochet, p. 304] |
Time table optimization | [Haneveld, p. 201] |
Optimal contract allocation | [Gass, p. 345], [Kallrath, p. 312] |
Interindustrial activity planning | [Gass, p. 362] |
Acquisition planning for spare parts | [Denardo, p. 67] |
Processor scheduling | [Lawler, p. 218] |
Planning repair project | [King, p. 39] |
Planning distribution networks | [Pochet, p. 66] |
Distribution problems | |
Positioning signal amplifier | [Appa, p. 134] |
Positioning measurement devices | [Appa, p. 135] |
Infrastructure design for an oil field | [Appa, pp. 291–317] |
DNA sequencing | [Appa, pp. 144–146] |
Memory allocation management | [Appa, pp. 146–148] |
Allocation transmission rates in telecommunication | [Appa, pp. 195–224], [Kallrath, p. 364] |
Optimization geometry during radiation therapy | [Appa, pp. 317–330] |
Experiment design | [Boyd2, p. 387] |
Portfolio optimization | [Boyd2, p. 155] |
Surface minimization | [Boyd2, p. 159] |
Knapsack problems and bin-packing problems | [Hu2, p. 87], [Korte, p. 471], [Gass, p. 391], [Denardo, p. 39], [Simchi-Levy, p. 66], [King, p. 33] |
Packing and storage | [Pochet, p. 421], [Pochet, p. 436] |
Cutting stock optimization | [Kallrath, p. 449] |
Facility layout | [Anjos, p. 849], [Lee, p. 597] |
Facility location choice | [Korte, p. 629], [Simchi-Levy, p. 283], [Kallrath, p. 232] |
Elektricity distribution | [Haneveld, p. 204] |
Price determination in energy networks | [Schewe, p. 57], [Schewe, p. 83] |
Diet problems | [Gass, p. 369] |
Optimal news mixes | [King, p. 4] |
Network design and graph problems | |
Logical satisfiability | [Appa, pp. 60–99], [Gärtner, p. 193], [Kallrath, p. 241] |
Team eliminations in sports | [Appa, pp. 137–139] |
Design decision models | [Appa, pp. 141–146] |
Graph decompositions | [De Klerk, p. 169] |
Maximal graph cuts | [Gärtner, p.3], [Wolkowicz, p. 396], [De Klerk, p. 7] |
Design integrated circuits | [Hu2, p. 120], [Korte, p. 509] |
Design of mechanical structures | [Wolkowicz, p. 443], [Vanderbei, p. 285] |
Network design | [Korte, p. 543], [Lawler, p. 286], [Simchi-Levy, p. 379], [Schewe, p. 32] |
Stochastic network design | [King, p. 86] |
Design networks water, gas | [Schewe, p. 113], [Schewe, p. 173] |
Shannon capacity of a graph | [Gärtner, p. 27] |
Quadratic forms on graphs and Ising model | [Gärtner, p. 167] |
Eigenvalue problems on graphs | [Wolkowicz, p. 547] |
Max-flow min-cut | [Lawler, p. 120] |
Matching bipartite graphs | [Lawler, p. 182] |
Partitioning and set cover problems | [Kallrath, p. 234] |
Optimal control
Problem | Source |
---|---|
Physical systems | |
Predictive control of dynamical systems | [Antoniou, p. 591] |
Optimal force distributions | [Antoniou, p. 602] |
Control of mechanical oscillators | [Lee, p. 648] |
Control of stochastic differential equations | [Teo, p. 480] |
Control robot motion | [Tassa] |
Inverse kinematics for robotics | [Antoniou, p. 251] |
Time delayed optimal control | [Teo, p. 152] |
Control pyrolysis of bitumen | [Teo, p. 282] |
Production of penicillin | [Teo, p. 7] |
Control of container cranes | [Teo, p. 333] |
Motor control | [Teo, p. 436], [Peypouquet, p. 71] |
Ship control | [Teo, p. 62] |
Control of water tank dynamics and water reservoirs | [Triantafyllopoulos, p. 3], [Feinberg, p. 537], [Haneveld, p. 185] |
Test of aerospace objects and ground control | [Triantafyllopoulos, p. 460], [Lee, p. 654] |
Airplane control | [Denardo, p. 84], [Lee, p. 692] |
Optimization of production in a chemical reactor | [Kallrath, p. 151] |
Control of chemical fermentation processes | [Teo, p. 418], [Denardo, p. 77] |
Separation of chemicals via chromatography | [Lee, p. 659] |
Synchronization of continuous and discrete chemical processes | [Kallrath, p. 382] |
Minimality properties of physical systems | [Alekseev, p.7] |
Operation and production | |
Data-driven adaptive process control | [Boucherie, p. 406], [Haneveld, p. 181] |
Inventory control with multiple commodities | [Simchi-Levy, p. 117], [Simchi-Levy, p. 122], [Gass, p. 155], [Bellmann, p. 152] |
Optimization of cooling chain for a supermarket | [Lee, p. 651] |
Warehose storage management with multiple retailers | [Simchi-Levy, p. 129], [Simchi-Levy, p. 137] |
Stochastic inventory control | [Simchi-Levy, p. 151], [King, p. 49], [Denardo, p. 145] |
Stochastic ski retailing | [Denardo, p. 117] |
Machine maintenance | [Teo, p. 487] |
Procurement strategy | [Kallrath, p. 270] |
Demand control | [Kallrath, p. 275] |
Decision analysis for logistical tasks | [Teo, p. 163] |
Optimal electricity production | [Denardo, p. 130] |
Adaptive callcenter occupancy | [Boucherie, p. 487] |
Decisions in complex systems | |
Portfolio management | [Teo, p. 132] |
Trading financial derivatives | [Triantafyllopoulos, p. 388], [Boucherie, p. 523], [Feinberg, p. 461] |
Adaptive ressource allocation | [Denardo, p. 34], [Bellmann, p. 3] |
Stochastic gold mining | [Bellmann, p. 61] |
Queue optimization for server systems | [Boucherie, p. 103] |
Optimization of timing and distribution of ambulance dispatch. | [Boucherie, p. 269] |
Predictive planning of preventive appointments and treatments. | [Boucherie, p. 189], [Boucherie, p. 243] |
Traffic dependent optimal control of traffic lights | [Boucherie, p. 371] |
Design of regulations for fisheries | [Boucherie, p. 426], [Lee, p. 643] |
Subway navigation | [Lee, p. 645] |
Games and adaptive strategies | |
Simple Blackjack | [Denardo, p. 131] |
Two-person zero-sum games | [Gass, p. 406] |
Equilibria in telecommunication networks | [Cominetti, p. 145], [Feinberg, p. 489] |
Equilibria in traffic networks | [Cominetti, p. 222] |
Aquatic exploration | [Denardo, p. 1136] |
Pursuit and evasion | [Bellmann, p. 287] |
Optimal Estimation
Problem | Quelle |
---|---|
Regression | |
Least squares with constraints | [Boyd, p. 153] |
Real estate pricing and housing markets | [Fahrmeir, p. 22], [Hastie, p. 371] |
Analysis of demographic models | [Hastie, p. 379] |
Price analysis orange juice | [Fahrmeir, p. 403] |
Google pagerank algorithm | [Hastie, p. 576] |
Analysis forest health | [Fahrmeir, p. 326] |
Analysis health maritime ecology | [Hastie, p. 375] |
Drivers of malnutrition in Sambia | [Fahrmeir, p. 576 |
Brain mapping | [Fahrmeir, p. 501] |
Mass spectroskopy | [Hastie, p. 664] |
Model for poultry sales | [Triantafyllopoulos, p. 151] |
Marketing campaing planning with advertisement data | [James, p. 102] |
Robust Least squares | [Lobo], [Boyd, p. 318] |
Robust PCA and logistic Regression | [O’donoghue] |
Classification | |
Classification of handwritten numbers | [Antoniou, p. 240], [Hastie, p. 404], [Schölkopf, p. 215], [Rasmussen, p.70] |
Object detection in images, image classification | [Paszke], [Hastie, p. 470], [Hastie, p. 534] |
Analysis of gene expressions with support vector machines | [James, p. 366] |
Speech recognition and text-to-speech conversion | [Hastie, p. 148], [Paszke] |
Classification of waveforms | [Hastie, p. 451] |
Spam detection | [Hastie, p. 313] |
Classification of text summaries | [Hastie, p. 672], [Paszke] |
Userdetection in wireless networks | [Antoniou, p. 614] |
Protein classification | [Hastie, p. 668] |
Estimation of functions | |
Modelling of physical processes | [Rasmussen, p. 79], [Chiles, p. 28], [Cressie, p. 410] |
Interpolation of spatiotemporal processes | [Bezhaev, p. 157], [Wahba, p. 46] |
Rekonstruction of functions, trajectories, vector fields. | [Bezhaev, p. 157] |
Signal decomposition into independent components | [Berlinet, p. 83], [Comon, p. 467], [Wahba, p. 73] |
Demixing of audio signals | [Comon, p. 779] |
Demixing of electrocardiograms | [Comon, p. 746] |
Demixing of image- and videodata | [Comon, p. 670] |
Analysis and interpretation of multispectral images | [Comon, p. 658], [Cressie, p. 5] |
Atmosphere modelling | [Wahbar, p. 78], [Cressie, p. 132] |
Image generation | [Paszke] |
Prediction of air pollution | [Triantafyllopoulos, p. 234] |
Estimation of spatial quantities like ressource distributions, soil properties, atmospheric parameters, tree densities, ocean temperatures, wind velocities, … | [Chiles, p.36] [Chiles, p. 53], [Chiles, p. 218], [Chiles, p. 352], [Wackernagel, p. 117], [Wackernagel, p. 184], [Wackernagel, p. 298], [Cressie, p. 248], … |
Image reconstruction and compression | [Boyd, p. 326], [Monga, p. 129], [MacKay, p. 65] |
Image quality optimization | [Monga, p. 15] |
Smoothing with wavelets | [Hastie, p. 176] |
Estimation of ship attitude | [Triantafyllopoulos, p. 284] |
Text translation | [Paszke] |
Statistics and data analysis | |
Chebychev inequality for uncertainty quantification | [Boyd, p. 374] |
Hypothesis tests and signal detection | [Boyd, p. 364], [Fomin, p. 30] |
Correlation analysis, variance analysis, PCA, CCA, ICA, LDA, … | [Press, p. 306], [Trendafilov, p. 89] |
Quantile estimation | [Schölkopf, p. 81] |
Analysis and interpretation of clinical studies on leukemia, lung diseases, complications during c‑sections, .. | [Fahrmeir, p. 57] [Fahrmeir, p. 326], [Fahrmeir, p. 331], [Hastie, p. 49], [Hastie, p. 122] |
Vehicle insurance and vehicle pricing | [Fahrmeir, p. 52], [Fahrmeir, p. 152], [James, p. 165] |
Probability of patent applications | [Fahrmeir, p. 33] |
Design digital filters | [Antoniou, p. 261], [Antoniou, p. 572] |
Measuring the efficiency of organizational units | [Kallrath, p. 159] |
Estimating credit scores | [Fahrmeir, p. 290] |
Processing of RFID Data | [Comon, p. 649] |
Identification and elemination of multi-path effects in measurements | [Comon, p. 655] |
Communication in noisy encrypted channels | [MacKay, p. 162], [MacKay, p. 241] |
Constrained simulation | [Chiles, p. 478] |
Sources
[Alekseev] Alekseev, V. M. (2013). Optimal Control. USA: Springer US.
[Anderson] Anderson, B. D. O., & Moore, J. B. (2007). Optimal Control: Linear Quadratic Methods. New York: Courier Corporation.
[Anjos] Anjos, Miguel F., & Lasserre, Jean B. (2016). Handbook on Semidefinite, Conic and Polynomial Optimization. USA: Springer US.
[Antoniou] Antoniou, Andreas, & Lu, Wu-Sheng. (2007). Practical Optimization: Algorithms and Engineering Applications. Berlin Heidelberg: Springer Science & Business Media.
[Appa] Appa, G. M., Pitsoulis, L., & Williams, H. P. (2006). Handbook on Modelling for Discrete Optimization. Berlin, Heidelberg: Springer.
[Bellman] Bellman, Richard E. (2021). Dynamic Programming: . Kassel: Princeton University Press.
[Bender] Bender, Edward A. (2012). An Introduction to Mathematical Modeling. New York: Courier Corporation.
[Berlinet] Berlinet, A., & Thomas-Agnan, C. (2011). Reproducing Kernel Hilbert Spaces in Probability and Statistics: . Berlin Heidelberg: Springer Science & Business Media.
[Bezhaev] Bezhaev, Anatoly Yu., & Vasilenko, Vladimir A. (2013). Variational Theory of Splines. Berlin Heidelberg: Springer Science & Business Media.
[Boucherie] Boucherie, R. J., & Dijk, N. M. (2017). Markov Decision Processes in Practice. Heidelberg, New York, Dordrecht, London: Springer International Publishing.
[Boyd1] Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear Matrix Inequalities in Systems and Control Theory. Philadelphia: SIAM Studies in Applied and Numerical Mathematics.
[Boyd2] Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge: Cambridge University Press.
[Chilès] Chilès, Jean-Paul, & Delfiner, Pierre. (2009). Geostatistics: Modeling Spatial Uncertainty. New York: John Wiley & Sons.
[Cominetti] Cominetti, Roberto, Facchinei, Francisco, & Lasserre, Jean B. (2012). Modern Optimization Modelling Techniques. Berlin Heidelberg: Springer Science & Business Media.
[Comon] Comon, Pierre, & Jutten, Christian. (2010). Handbook of Blind Source Separation: Independent Component Analysis and Applications. Amsterdam, Boston: Academic Press.
[Cressie] Cressie, Noel, and Wikle, Christopher K. (2015). Statistics for Spatio-Temporal Data. New York: John Wiley & Sons.
[De Klerk] De Klerk, E. (2006). Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications. Berlin Heidelberg: Springer Science & Business Media.
[Dem’yanov] Dem’yanov, V. F., & Malozemov, V. N. (2014). Introduction to Minimax. New York: Courier Corporation.
[Denardo] Denardo, Eric V. (2012). Dynamic Programming: Models and Applications. New York: Courier Corporation.
[Dostál] Dostál, Zdenek. (2009) Optimal Quadratic Programming Algorithms: With Applications to Variational Inequalities. Berlin Heidelberg: Springer Science & Business Media.
[Dym] Dym, C. L. (2002). Stability Theory and Its Applications to Structural Mechanics. New York: Dover Publications.
[Erciyes] Erciyes, K. (2021). Discrete Mathematics and Graph Theory: A Concise Study Companion and Guide. Singapore: Springer Nature.
[Fahrmeir] Fahrmeir, Ludwig, Kneib, Thomas, Lang, Stefan, & Marx, Brian. (2013). Regression: Models, Methods and Applications. Berlin Heidelberg: Springer Science & Business Media.
[Feinberg] Feinberg, E. A., and Shwartz, A. (2012). Handbook of Markov Decision Processes: Methods and Applications. Berlin Heidelberg: Springer Science & Business Media.
[Fomin] Fomin, V.N. (2012). Optimal Filtering: Volume I: Filtering of Stochastic Processes. Berlin Heidelberg: Springer Science & Business Media.
[Fu] Fu, Michael C. (2014). Handbook of Simulation Optimization. Berlin, Heidelberg: Springer.
[Gärtner] Gärtner, Bernd, & Matousek, Jiri. (2012). Approximation Algorithms and Semidefinite Programming: . Berlin Heidelberg: Springer Science & Business Media.
[Gass] Gass, Saul I. (2003). Linear Programming: Methods and Applications. New York: Courier Corporation.
[Giraud] Giraud, Christophe. (2014). Introduction to High-Dimensional Statistics. Boca Raton, Fla: CRC Press.
[Grafarend] Grafarend, Erik W., Sansò, F. (2012). Optimization and Design of Geodetic Networks. Berlin Heidelberg: Springer Science & Business Media.
[Haneveld] Haneveld, Willem K. Klein, Vlerk, Maarten H. van der, & Romeijnders, Ward. (2019). Stochastic Programming: Modeling Decision Problems Under Uncertainty. Singapore: Springer Nature.
[Hu2] Hu, T. C., & Kahng, Andrew B. (2016). Linear and Integer Programming Made Easy. Berlin, Heidelberg: Springer.
[James] James, Gareth, Witten, Daniela, Hastie, Trevor, & Tibshirani, Robert. (2013). An Introduction to Statistical Learning: with Applications in R. Berlin Heidelberg: Springer Science & Business Media.
[Jungnickel] Jungnickel, Dieter. (2013). Graphs, Networks and Algorithms: . Berlin Heidelberg: Springer Science & Business Media.
[Kallrath] Kallrath, Josef. (2021). Business Optimization Using Mathematical Programming: An Introduction with Case Studies and Solutions in Various Algebraic Modeling Languages. Singapore: Springer Nature.
[King] King, Alan J., & Wallace, Stein W. (2012). Modeling with Stochastic Programming: . Berlin Heidelberg: Springer Science & Business Media.
[Korte] Korte, Bernhard, and Vygen, Jens. (2012). Kombinatorische Optimierung: Theorie und Algorithmen. Berlin Heidelberg New York: Springer-Verlag.
[Lawler] Lawler, Eugene. (2012) Combinatorial Optimization: Networks and Matroids. New York: Courier Corporation.
[Lee] Lee, Jon, and Leyffer, Sven. (2011). Mixed Integer Nonlinear Programming: . Berlin Heidelberg: Springer Science & Business Media.
[Li] Li, Li. (2015). Selected Applications of Convex Optimization. Berlin, Heidelberg: Springer.
[Lobo] Lobo, M. S., Vandenberghe, L., Boyd, S. & Lebret, H. (1998). Applications of second-order cone programming. Linear Algebra and its Applications, 184, 193–228.
[Luenberger] Luenberger, David G., & Ye, Yinyu. (2021). Linear and Nonlinear Programming. Singapore: Springer Nature.
[MacKay] MacKay, David J. C. (2003). Information Theory, Inference and Learning Algorithms. Cambridge: Cambridge University Press.
[Monga] Monga, Vishal. (2017). Handbook of Convex Optimization Methods in Imaging Science. Berlin, Heidelberg: Springer.
[Morse] Morse, Philip M., & Kimball, George E. (2012). Methods of Operations Research. New York: Courier Corporation.
[O’donoghue] O’donoghue, B., Chu, E., Parikh, N., & Boyd, S. (2016). Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding. Journal of Optimization Theory and Applications, 169(3), 1042–1068.
[Paszke] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelsheim, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., Devito, Z., Raison, M. Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., & Soumith, C. (2019). PyTorch: An imperative style, High-Performance Deep Learning Library. In: Advances in Neural Information Processing Systems 32. Curran Associates, Inc, pp. 8024–8035. URL: https://pytorch.org/tutorials/
[Peypouquet] Peypouquet, Juan. (2015). Convex Optimization in Normed Spaces: Theory, Methods and Examples. Berlin, Heidelberg: Springer.
[Pinedo] Pinedo, Michael L. (2016). Scheduling: Theory, Algorithms, and Systems. Berlin, Heidelberg: Springer.
[Pochet] Pochet, Yves, & Wolsey, Laurence A. (2006). Production Planning by Mixed Integer Programming. Berlin Heidelberg: Springer Science & Business Media.
[Poler] Poler, Raúl, Mula, Josefa, and Díaz-Madroñero, Manuel. (2013). Operations Research Problems: Statements and Solutions. Berlin Heidelberg: Springer Science & Business Media.
[Press] Press, S. James. (1982). Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of Inference. Malabar, Florida: R.E. Krieger Publishing Company.
[Rasmussen] Rasmussen, Carl Edward, and Williams, Christopher K. I. (2005). Gaussian Processes for Machine Learning: . Cambridge: MIT Press.
[Sánchez] Sánchez, José Manuel García. (2020). Modelling in Mathematical Programming: Methodology and Techniques. Singapore: Springer Nature.
[Schewe] Schewe, Lars, & Schmidt, Martin. (2019). Optimierung von Versorgungsnetzen: Mathematische Modellierung und Lösungstechniken. Wiesbaden: Springer Berlin Heidelberg.
[Schölkopf] Schölkopf, Bernhard, & Smola, Alexander J. (2018). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge: MIT Press.
[Schulz] Schulz, Andreas S., Skutella, Martin, Stiller, Sebastian, & Wagner, Dorothea. (2016). Gems of Combinatorial Optimization and Graph Algorithms. Berlin, Heidelberg: Springer.
[Simchi-Levy] Simchi-Levi, David, Chen, Xin, & Bramel, Julien. (2013). The Logic of Logistics: Theory, Algorithms, and Applications for Logistics Management. Berlin Heidelberg: Springer Science & Business Media.
[Sutton] Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction. Cambridge: MIT Press.
[Tassa] Tassa, Y., Erez, T., & Todorov, E. (2012). Synthesis and stabilization of complex behaviors through online trajectory optimization. In: Proceedings IEEE/RSJ International conference on Intelligent Robots and Systems 2012, pp. 4906–4913.
[Teo] Teo, Kok Lay, Li, Bin, Yu, Changjun, & Rehbock, Volker. (2021). Applied and Computational Optimal Control: A Control Parametrization Approach. Singapore: Springer Nature.
[Trendafilov] Trendafilov, Nickolay. (2021). Multivariate Data Analysis on Matrix Manifolds (with Manopt). Singapore: Springer Nature.
[Triantafyllopoulos] Triantafyllopoulos, Kostas. (2021). Bayesian Inference of State Space Models: Kalman Filtering and Beyond. Cham, Heidelberg, New York, Dordrecht, London: Springer International Publishing.
[Vanderbei] Vanderbei, Robert J. (2013). Linear Programming: Foundations and Extensions. USA: Springer US.
[Wackernagel] Wackernagel, Hans. (2013). Multivariate Geostatistics: An Introduction with Applications. Berlin Heidelberg: Springer Science & Business Media.
[Wahba] Wahba, Grace. (1990). Spline Models for Observational Data. Philadelphia: SIAM.
[Wolkowicz] Wolkowicz, H., Saigal, R., & Vandenberghe, L. (2012). Handbook of Semidefinite Programming: Theory, Algorithms, and Applications. Berlin Heidelberg: Springer Science & Business Media.
[Zelinka] Zelinka, Ivan, Snásel, Václav, & Abraham, Ajith. (2012). Handbook of Optimization: From Classical to Modern Approach. Berlin Heidelberg: Springer Science & Business Media.