Offerings: Courses

Overview

We offer seve­ral half-day and full-day cour­ses. They are aimed at gene­ral­ly inte­res­ted indi­vi­du­als wit­hout pri­or expe­ri­ence (Optimi­zation I, Machi­ne Lear­ning I) and at tho­se who regu­lar­ly deal with mathe­ma­ti­cal mode­ling and wish to deepen their skills.

In the advan­ced cour­ses, mate­ri­al from the are­as of opti­mal esti­ma­ti­on, opti­mal con­trol, and deep lear­ning is cover­ed. They pro­vi­de the tools nee­ded to sol­ve con­cre­te real-world problems.

Format

We place importance on a healt­hy mix of theo­ry and prac­ti­ce. Appli­ca­ti­on-ori­en­ted tuto­ri­als using free­ly available sta­te-of-the-art open-source soft­ware are part of the pro­gram, as are infor­mal dis­cus­sions, pre­sen­ta­ti­ons of fun­da­men­tal theo­ry, prac­ti­cal examp­les, new insights, or the deri­va­ti­on of equa­tions. The exact mix of the­se dif­fe­rent ele­ments is deter­mi­ned by the cour­se objec­ti­ves and to a lar­ge ext­ent by the participants.

Your per­so­nal bene­fit is important to us. In the courses,

  • we pre­sent ever­y­thing neces­sa­ry on the topics of optimi­zation and machi­ne learning,
  • you will dis­cuss and imple­ment prac­ti­cal examp­les on lap­tops pro­vi­ded by us,
  • you will get to know func­tio­ning soft­ware and take it home.
You will be super­vi­sed by a com­pe­tent staff mem­ber, who will sup­port you during the lear­ning expe­ri­ence and help you con­vert the theo­re­ti­cal know­ledge into prac­ti­cal gains usable for your projects.

Courses

Detailed explanation

Basic infor­ma­ti­on about the theo­ries and appli­ca­ti­ons of optimi­zation and machi­ne lear­ning can be found here and here. Have we piqued your inte­rest or do you need more infor­ma­ti­on? Then cont­act us and share your ques­ti­ons or sug­ges­ti­ons. Par­ti­ci­pa­ti­on in the cour­ses is pos­si­ble from Fall 2024; regis­tra­ti­on will then be open.

Cour­seDura­ti­onDif­fi­cul­tyTopics
Optimi­zation I: Overview2 hDefi­ni­ti­on of Optimi­zation, Prac­ti­cal Rele­van­ce of Optimi­zation Pro­blems, Examp­les from Natu­re, Tech­no­lo­gy, Eco­no­my, Sol­va­bi­li­ty of Optimi­zation Pro­blems, Sta­te of the Art
Rese­arch Direc­tions, Prac­ti­cal Aspects
Optimi­zation II: Theo­ry and practice4 hMathe­ma­ti­cal for­mu­la­ti­on of optimi­zation pro­blems, line­ar, qua­dra­tic, second order cone, semi­de­fi­ni­te, sto­cha­stic, and dyna­mic pro­gramming, are­as of appli­ca­ti­on, exam­p­le pro­blems, mode­ling tech­ni­ques, Python and CVXPY.
Optimi­zation III A: Opti­mal esti­ma­ti­on and data analysis6 hSto­cha­stic models, least squa­res, para­me­ter esti­ma­ti­on, inter­po­la­ti­on and smoot­hing of high-dimen­sio­nal data, Hil­bert spaces, Gaus­si­an pro­cess regres­si­on, indi­rect obser­va­tions, worst-case pro­ba­bi­li­ty estimates.
Optimi­zation III B: Opti­mal con­trol and Mar­kov decis­i­on processes6 hSys­tem ana­ly­sis, sys­tem iden­ti­fi­ca­ti­on, sta­bi­li­ty, con­troll­a­bi­li­ty and obser­va­bi­li­ty, line­ar qua­dra­tic con­trol­lers, robust opti­mal con­trol, sto­cha­stic opti­mal con­trol, line­ar matrix ine­qua­li­ties and semi­de­fi­ni­te pro­gramming, Mar­kov decis­i­on pro­ces­ses, sta­te of the art, exam­p­le applications.
Optimi­zation III C: Nume­rics and software4 hNai­ve methods, con­ve­xi­ty, New­ton’s method, inte­ri­or point methods, dua­li­ty, stan­dard for­mu­la­ti­ons, pro­gramming LP and QP sol­vers yours­elf, CVXPY, for­mu­la­ting pro­blems in CVXPY, inter­pre­ta­ti­on of out­puts, sta­te-of-the-art open source and com­mer­cial solvers.
ML I: Overview2 hDefi­ni­ti­on and dif­fe­ren­tia­ti­on of machi­ne lear­ning, over­view, suc­cess sto­ries, super­vi­sed lear­ning, unsu­per­vi­sed lear­ning, rein­force­ment lear­ning, appli­ca­ti­on examp­les, fail­ure cases, optimi­zation for­mu­la­ti­ons and solu­ti­ons, what can be sol­ved with ML?
ML II: Theo­ry and practice4 hML as a sta­tis­ti­cal optimi­zation pro­blem, simp­le examp­les, the clas­sic five tasks, examp­les and Python libra­ri­es, neu­ral net­works, trai­ning and test­ing, archi­tec­tu­re of ML soft­ware and packages.
ML III A: Ker­nels and neu­ral Nets6 hInfi­ni­te-dimen­sio­nal spaces and ker­nels, fea­tures and fea­ture design, non­line­ar fea­tures, sup­port vec­tor machi­nes, RKHS and the ker­nel trick, ANNs as uni­ver­sal func­tion appro­xi­ma­tors, archi­tec­tu­re and trai­ning, con­ver­gence, inter­pre­ta­ti­ons of lay­ers, appli­ca­ti­ons such as neu­ral style transfer.
ML III B: Deep lear­ning with PyTorch6 hManu­al fea­tures vs deep lear­ning, lear­ning from images, net­work archi­tec­tu­re, reco­gni­ti­on of pos­tal codes in images, SVMs vs DL, non-con­ve­xi­ty, con­ver­gence pro­blems, ADAM, prac­ti­cal imple­men­ta­ti­on in PyTorch, insights into an ANN, ImageN­et, net­work archi­tec­tures for text, image, and time series data.
ML III C: Rein­force­ment learning6 hLimits of clas­si­cal opti­mal con­trol for­mu­la­ti­ons, reward for­ma­lism, rein­force­ment lear­ning para­digms, bio­lo­gi­cal foun­da­ti­ons, Mar­kov decis­i­on pro­ces­ses, poli­ci­es as solu­ti­ons, sto­cha­stic tran­si­ti­on models, explo­ra­ti­on vs. explo­ita­ti­on, cur­rent suc­ces­ses and algo­rith­ms, imple­men­ta­ti­on in Sta­ble Baselines3, exam­p­le applications.

Programming language

In the cour­ses, we use the Python pro­gramming lan­guage and the open source frame­works CVXOPT, CVXPY, PyTorch, Pyro,  and Sta­ble Baselines3 as well as our cus­tom-desi­gned Atlas Optimi­zation Suite. Optimi­zation and machi­ne lear­ning pro­blems can be for­mu­la­ted and sol­ved using the­se soft­ware packa­ges through a gra­phi­cal user inter­face, wit­hout the need to del­ve into pro­gramming details.

The advan­ced cour­ses are thus also sui­ta­ble for indi­vi­du­als wit­hout pro­gramming know­ledge. Howe­ver, some expe­ri­ence with mathe­ma­ti­cal methods is requi­red. The cour­ses take place in Zurich or, upon com­pa­ny request, externally.